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Abstract
Big data needs to be considered in terms of how the data will be manipulated. The size of the data set will impact data
capture, movement, storage, processing, presentation, analytics, reporting, and latency. Traditional tools quickly can
become overwhelmed by the large volume of big data. Latency—the time it takes to access the data—is an important
consideration as volume. Suppose to run an ad hoc query against the large dataset or a predefined report, a large data
storage system is not a data warehouse, however, and it may not respond to queries in a few seconds. It is, rather, the
organization-wide repository that stores all of its data and is the system that feeds into the data warehouses for
management reporting. One solution to the problems presented by very large data sets might be to discard parts of the
data so as to reduce data volume, but this is not always practical. Regulations might require that data be stored for a
number of years, or competitive pressure could force to save everything. The characterization results vary with the
Choice of the type of servers we choose, big vs little core-based server for energy-efficiency is significantly influenced
by the size of data, performance constraints and presence of an accelerator. Furthermore, the micro architecture-level
analysis gives us a clear picture of the analysis part that is much needed on the server architectures.
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INTRODUCTION

Advances in various branches of technology, data
sensing, data communication, data computation and
data storage  are  driving an era of unprecedented
innovation for information retrieval. The world of Big
Data is constantly changing and producing huge
amounts of data that creates challenges to process the
applications using existing solutions. Big data
applications require computing resources and storage
subsystems that can scale to manage massive amounts
of diverse data. Individuals, businesses, governments
and society as a whole now have access to enormous
collections of big data, empowering them to build their
own analytics. Data centers are therefore required to
introduce more nodes to their infrastructure or replace
their existing hardware with more powerful systems
to respond to this growing demand. This trend
increases the infrastructure cost and power
consumption. We believe this is the right time to
identify the right computing platform for Big Data
analytics processing that can provide a balance
between processing capacity and power efficiency.
Emerging data applications, in particular from web
service domain, share many inherent characteristics

that are fundamentally different from traditional
desktop, parallel and scale-out applications  (Gao
et al., 2013). Big data analytics applications in these
domains heavily rely on big-data-specific deep
machine learning and data mining algorithms, and
are running complex database software stack with
significant interaction with I/O and OS, and exhibit
high computational intensity, memory intensity, I/O
intensity and control intensity. In addition, unlike
conventional CPU applications, big data applications
combine a high data rate requirement with high
computational power requirement, in particular for
real-time and near-time performance constraints. This
new set of characteristics is necessitating a change in
the direction of server-class micro architecture to
improve their computational efficiency. However,
while demand for data center computational resources
continues to grow as the size of data grows; the
semiconductor industry has reached its physical
scaling limits and is no longer able to reduce power
consumption in new chips. Physical design
constraints, such as power and density, have therefore
become the dominant limiting factor for scaling
out datacenters (Ferdman et al.,  2012; Ghazal
et al.,2013; Kontorinis et al. ,  2012; Guiterrez
et al.,2014). Current server designs, based on
commodity homogeneous processors, will therefore
not be the most efficient in terms of performance/watt
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to process big data applications  (Guiterrez et al.,
2014;Reddi et al., 2010). In this work we show that
while high performance big cores are optimized for
traditional CPU applications, for big data they are very
inefficient and are not satisfying their computational
efficiency requirements. In exploring the choice of server
architecture for big data, in this paper, we present a
comprehensive analysis of the measurement of power
and performance of big data applications on two very
distinct micro architectures; a high performance big
Xeon core and another a low power embedded-like
little Atom core. These two types of servers represent
two schools of thought on server architecture design:
using big core like Xeon, which is a conventional
approach to designing a high-performance server, and
the Atom, which is a new trajectory in server design
that advocates the use of a low-power core to
address the dark silicon challenge facing servers
(Reddi et al., 2010; Homayoun et al., 2012; Andersen
David et al., 2009; Hardvells et al., 2011; Kontorinis
et al., 2014).In addition to power and performance
study, we have also performed the Energy-DelayX
Product (EDXP) analysis to evaluate the trade-off
between power and performance to understand how
near real-time performance constraints for big data
analytics affects the choice of big vs. little core server
as a more efficient architecture. As for big data
applications, achieving a higher processing rate of
large amount of data is a prime target and  hence we
have evaluated the processing capability under
different data size (per node) by using two metrics –
Data Processed Per Second (DPS) and Data Processed
Per Joule (DPJ). The analysis helps us to understand
as to how the choice of big vs. little cores introduces
significant tradeoff in performance, power, energy-
delay, and processing capacity for efficient and near-
time processing of big data applications. The results
demonstrate that while in most applications, server
with little cores is more efficient in terms of EDP and
DPJ, with constraints for near real-time performance
the most efficient server architecture depends on the
data size and the type of application. As chips are
hitting power limits, computing systems are moving
away from general-purpose designs and toward greater
specialization. Hardware acceleration through
specialization has received renewed interest in recent
years, mainly due to the dark silicon challenge. To find
out the right architecture for big data processing, it is
important to understand ways for deploying an
accelerator, such as FPGA, would necessitate adapting
the choice of big vs. little cores. The post acceleration
code characteristics are important to find the right
architecture for efficient processing of big data
applications. For this purpose, we analyze the choice
of big vs. little core-based servers for the code that

remains for the CPU after assuming the hotspots are
off loaded to an accelerator, compared with the choice
of big vs. little before acceleration. Overall, our
characterization results across a wide range of real-
world big data applications and various software
stacks demonstrate how the choice of big vs little core-
based servers for energy-efficiency is significantly
influenced by the size of data, performance constraints
and presence of accelerator. To provide insight into
whether current design of big and little core requires
improvement in the micro architecture parameters for
efficient big data processing we further perform a
comprehensive micro architecture characterization.
This study assists in determining whether big data
workloads require innovation in microprocessor micro
architecture design.

Background on Big Data applications

The “cloud” is a new platform that has been used to
cost effectively deploy an increasingly wide variety of
applications. Vast amount of data is now stored in a
few places rather than distributed across a billion
isolated computers, and hence creates opportunities
to learn from the aggregated data. The rise of cloud
computing and cloud data storage, therefore, has
facilitated the emergence of big data applications. Big
data applications are characterized by four critical
features, referred as the four “Vs”, volume, velocity,
variety, and veracity. Big data is inherently large in
volume. Velocity refers to how fast the data is coming
in and to how fast it needs to be analyzed. In other
words, velocity addresses the challenges related to
processing data in real-time. Variety refers to the
number and diversity of sources of data and databases,
such as sensor data, social media, multimedia, text,
and much more. Veracity refers to the level of trust,
consistency and completeness of data. Traditionally,
cloud servers mainly use high performance CPU cores
such as Xeon. However, low-power embedded cores
such as Atom are gradually entering the server market.
Therefore, it is important to characterize emerging big
data applications on these two different platforms to
understand their computational need and architectural
bottlenecks.

Dominant Big Data Workloads

Big data Workload

Hadoop Micro benchmark

Apache Hadoop is an open source Java-based
framework of Map Reduce implementation. It assists
the processing of large datasets in a distributed
computing environment and stores data in highly
fault-tolerant distributed file system, HDFS. Hadoop
has numerous micro benchmarks from which we have

Framework for Big Data Applications . . .
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included a combination of I/O intensive and CPU
intensive applications as follows: • Word Count reads
text files and determines how often the words appear
in a set of files. Word count is a CPU intensive
application (Huang et al., 2010).Sort uses the map/
reduce framework to sort the input directory in the
output directory. The actual sorting occurs in the
internal shuffle and sort phase of Map Reduce. The
data is transferred to reducer that is an identity
function. Sort is an I/O intensive application (Huang
et al., 2010). Grep extracts matching strings provided
by user from text files and sorts matching strings by
their frequency. Grep is a CPU intensive
application.Tera Sort performs a scalable Map Reduce-
based sort of input data. It first samples the input and
computes the input distribution by calculating the
quantities equal to the number of reduces that uses a
sorted list of N-1 sampled keys to define the key range
for each reduce. TeraGen command generates the large
random data for Tera Sort (Huang et al., 2010).Test
DFSIO-write/read is a storage throughput test that is
divided into two parts, Test DFSIO-Write and Test
DFSIO Read to write and read data to/from HDFS,
respectively.

Graph Mining

Graph construction can be very challenging because
of complex iterative and data-dependent nature of the
graph. Hadoop is well suited for this task, but requires
expertise to handle graph complexities. Graph Builder
addresses this challenge by providing a scalable graph
construction software library for Hadoop. Graph
Builder constructs graphs for Page Rank and LDA
algorithms implemented on Power Graph (Willke et
al., 2012). Collaborative Filtering (CF) Recommendation
is a technique used by many recommender systems to
predict the preference of users based on their previous
rating history. Clustering is one of the fundamental
tasks in Data Mining. Clustering assembles data items
into groups based on their similar features. We have
analyzed mean shift clustering as it is a non-
parametric clustering technique that does not require
prior knowledge of the number of clusters. Association
Rule Mining is a well-known approach for exploring
association between various parameters in large
databases. We have analyzed FP (Frequent Pattern)-
Growth; a resource intensive program that aims to
determine item sets in a group and identifies which
items typically appear together. Sequential Pattern
Mining Framework (SPMF) is an open-source data
mining library written in Java. It offers numerous data
mining algorithms for sequential pattern, rule mining
and frequent item mining for which we have selected
Equivalence Class Transformation (ECLAT), Rule
Growth, Generalized Sequential Pattern (GSP) and
Sequential Pattern Discovery using Equivalence
classes (SPADE).

Scales-Out Workloads

Classification technique learns from the existing
categorizations and groups the unclassified items to
the best corresponding category (Ferdman et al.,
2012).Graph-analysis is performed by implementing
the Trunk Rank on Graph Lab (Ferdman et al.,2012).
This application studies the impact of a Twitter user
for graph analysis. Data Caching. Memcached is a
high-performance, general-purpose distributed
memory caching system. It uses in memory key-value
storage mechanism for small chunks of arbitrary data
API calls (Ferdman et al.,2012).

Traditional CPU Benchmarks

SPEC CPU2006 workloads are industry standard real
life applications designed to stress the CPU, memory
subsystem and compiler.

PARSEC 2.1 is an open-source parallel benchmark
suite for evaluating multi-core and multiprocessor
systems.

Measurement Tools and Methodology

The Figure 2 presents a methodology of our approach.
We conduct our study on two state-of-the-art servers,
Intel Xeon and Intel Atom. Intel Xeon E5 enclosed with
two Intel E5-2420 processors that includes six
aggressive processor cores per node with three-level
of the cache hierarchy. Intel Atom C2758 has 8
processor cores per node and a two-level cache
hierarchy. Table 2 summarizes the key architectural
parameters of these two servers. The operating system
used is Ubuntu 13.10 with Linux kernel 3.11. We
analyze the architectural behavior using Intel V Tune,
a performance-profiling tool that provides an interface
to the processor performance counters. We have used
Watts up PRO power meter to measure the power
consumption of the servers. Watts up power meter
produces the power consumption profile every one
second of an application under test.

Fig.2. Methodology

              

The power reading is for the entire system, including
core, cache, main memory, hard disks and on-chip
communication buses. We have collected the average
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power consumption of the studied applications and
subtracted the system idle power to calculate the
dynamic power dissipation of the entire energy
analysis. The same methodology is used  (Blem et al.,
2013) as well. We discuss the system-level -
performance, power, EDP and micro architecture-level
analysis- cache misses, branch mis prediction and TLB
misses-for big data applications and Hadoop micro-
benchmarks. In addition, Table 1 shows the datasets
used to drive the studies applications.

Experimental results and analysis

In this section, we discuss the system-level and
microarchitecture-level analysis of little and big cores,
when running traditional CPU benchmarks, parallel
benchmarks, scale-out, and big data applications. Due
to space constraints, we are only reporting the average
results for SPEC, PARSEC and Scale Out applications.
Moreover, we have conducted the data size sensitivity
analysis of Hadoop micro-benchmarks with the dataset
of 10MB, 100MB, 1GB and 10GB per node to
understand the impact of the size of data per
processing node on system-level as well as
microarchitecture-level parameters.

Performance Analysis

In this section, we analyze the performance
measurements of big data applications in term of IPC
and compare it with the traditional benchmarks. The
average IPC of big data is 1.65 times lower than the
traditional CPU benchmarks on big core and 1.21 times
on little core. Therefore, noticeably more performance
drop (37%, on average) is observed for big data
applications compared to traditional CPU applications
when running on big core server compared to little
core server. In general, we observe lower IPC in big
data applications compared with the traditional
benchmarks. Furthermore, little core-based server is
experiencing 1.43 times lower IPC in comparison to
big core server as Xeon can process up to 4 instructions
simultaneously while Atom is limited to 2 instructions
per cycle. Figure 3.2 shows the IPC of Hadoop micro-
benchmarks for different data sizes. The results are
consistent with the results in Figure 3.1 showing lower
IPC on little core compared to big core across all data
sizes. We also observe that on little core, increasing
the data size reduces the IPC since the cache misses
increased (mainly Icache miss as will be described in
section 5.5.1). Little core, due to its low processing
capacity (issue width of 2), cannot hide cache miss
penalty as effective as big core. However, on big core
while for most cases, increase in data size per node
reduces the IPC, there are few exceptions where
increasing the data size from 100MB to 1000MB per
node increases the IPC. This is mainly due to higher
cache locality as a result of larger and more complex

cache subsystem in big core, which results in reduction
in cache miss rates

Power Consumption and Energy-Efficiency Analysis

 In this section, we report the power consumption of
big data applications and discuss the energy-efficiency
analysis to evaluate the trade-off between power and
performance.

Power Characterization

The results show the average dynamic power
consumption of the studied applications on big and
little core servers. The idle power of the servers is
subtracted from the measured (runtime) power. Note
that the power results reported are for the entire system,
including core, cache, DRAM and on-chip
communication buses. Big core consumes on average
35 Watts of dynamic power with the peak of 44 Watts
in cluster application. Little core consumes much lower
dynamic power as expected, ranging from 0.9 to 6
Watts with an average of 4.8 Watts. Figure 4.2 shows
that the power consumption increases as the size of
data per node increases in most cases across both big
and little architectures. This is more noticeable in little
core. While increasing in data size in little core reduces
the IPC and therefore core power, it increases cache
and off-chip traffic in DRAM and bus subsystem (see
LLC MPKI reported in Figure 10). Therefore, for low-
end little core where cache, DRAM and off-chip
components are dominant power consumer (unlike
high performance Xeon core), a clear rise in power
consumption is observed as the size of data increases.

Energy-Efficiency Analysis with near Real–Time
Processing Constraints

Based on the results of power consumption for both
platforms, we have evaluated the trade-off between
power and performance by investigating the EDP
metric. Furthermore, we have explored the ED2 P and
ED3 P to understand the impact of near real-time
performance constraints on big data applications and
how more constraints on performance affects the
choice of most efficient server architecture.

Table.2. Architectural Parameters

Framework for Big Data Applications . . .
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DPS-DPJ Analysis

In this section, we evaluate the data processing
capability of big and little core-based server for various
data sizes in Hadoop micro-benchmarks. We report
the data processed per second (DPS) and the data
processed per joule (DPJ) metrics to compare the data
processing capability and efficiency of the two server
architectures. The peak DPS occurs in terasort and sort
at only 1000MB of size, while in other applications
occurs in at least an order of magnitude larger data
size. The reason is that sort and terasort are I/O
intensive applications and the rise in data size
exacerbates the I/O cost to an extent that it diminishes
the benefit of high processing capacity (Yu et al., 2004).
The DPS difference between big and little cores-based
server is becoming larger for CPU intensive
applications such as grep and word count as the size
of data increases. However, this is not the case for I/O
intensive applications such as sort and DFSIO-read
as the I/O cost becomes the dominant performance
bottleneck and the processing capacity of the
processor; i.e. big vs. little become a less important
factor. Overall, for small data size, below 1000MB per
node, the two architectures, big and little, have almost
similar processing capacity in terms of DPS and it is
only for large data sizes that the DPS gap between the
two becomes clear. Similar to DPS, for DPJ, in all
applications we observe a rise in data processing
efficiency on big core as the size of data increases.
However, in I/O intensive applications such as
terasort, DFSIO-read and write, the rise in DPJ on Xeon
is insignificant. For CPU intensive applications
including word count and grep there is a significant
rise in DPJ on Xeon as the size of data increases. Overall,
for I/O intensive applications such as sort, terasort,
DFSIO-write and DFSIO-read, Atom-based server is
noticeably more efficient than big Xeon. However, in
CPU intensive micro-benchmarks, Word Count and
Grep, the DPJ gap between big and little core-based
server reduces with the increase in data size. It is also
interesting to observe that the DPJ of Xeon can exceed
Atom in a number of applications and across a number
of different data sizes.

Observation

The results illustrate that the choice of big vs little core-
based servers in terms of DPS and DPJ analysis are
closely decided by the application type and the size of
data.

Performance Hotspot and Post-Acceleration CPU
code Characterization

As chips are hitting power limits, computing systems
are moving away from general-purpose designs to
greater specialization. Hardware acceleration through

specialization has received renewed interest in recent
years, mainly due to the dark silicon challenge. In
addition to big, medium   and small cores, the
integration of domain-specific accelerators, such as
GPUs and FPGAs has become extensive. To find out
the right server architecture for big data processing, it
is important to understand how to deploy an
accelerator, such as FPGA, would necessitate adapting
the choice of CPU. The post acceleration code
characteristics are important to find the right
architecture for efficient processing of big data
applications. In this section, we analyze the choice of
big vs little core-based server for the code that remains
for the CPU after acceleration, compared with the
choice of big vs little before acceleration. A key research
challenge for heterogeneous architecture that
integrates CPU and accelerator such as FPGA is
workload partitioning and mapping of a given
application (which is alternatively referred to as
scheduling) to CPU and FPGA for power, performance,
and QoS (Neshatpour et al., 2015). This is commonly
referred as hardware and software partitioning. A
common method for HW/SW partitioning is to profile
the application to find the performance hotspot region.
These regions are candidates for FPGA acceleration,
as long as the overhead of communication with CPU
is not significant (Nilakantan  et al., 2013). To perform
hotspot analysis on big data applications, we use Intel
V tune to select the common hotspot modules of the
applications running on big and little cores. First, we
identify and analyze hotspot modules based on their
execution time. Overall, Xeon provides a lower
execution time, however, if speedup after acceleration
is very small then considering the power consumption
of Xeon, Atom-based will be a more efficient server to
execute the post-accelerated code.

Observation

We studied as to how offloading hotspot map and
reduce tasks to an accelerator such as FPGA affects
the choice of big vs. little core-based server for
processing. The results showed that the choice of big
vs. little before and after accelerations is different. While
most benchmarks clearly favor little core post
acceleration, in several applications post accelerated
code showed higher speed up on big core-base server
over little core-base server compared to pre-
acceleration.

Related Work

Recently, there have been a number of efforts to
benchmark and characterize big data and cloud-scale
applications, mainly on state-of-the-art high
performance server platform. In general, there are two
major approaches for benchmarking big data: A system
benchmarking and a component benchmarking. A
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system benchmark is an end-to-end benchmarking
which includes the entire database and application
software stack, including data preparation, data
aggregation and data analytics. A component
benchmark encloses only a portion of the entire end-
to-end system (Arora Manish et al., 2012). The most
prominent big data benchmarks include Hi Bench,
Scale-Out, Big Data Bench, Cloud Cmp and Link Bench.
Hi Bench (Huang et al., 2013) is a benchmark suite for
Hadoop Map Reduce. Cloud Cmp (Li et al., 2010) use a
systematic approach to benchmark various
components of the cloud to compare cloud providers.
Link Bench is a real-world database benchmark for
social network applications (Armstrong et al., 2013).
The Transaction Procession Performance Council
(TPC) has released a number of benchmark suites in
recent years, including TPC-C, TPC-E, and TPC-DS for
online transaction processing. Big Data Bench (Gao et
al., 2013) was released very recently and includes
online service and offline analytics for web service
applications. Big Bench (Ghazal  et  al., 2013) is a new
big data benchmark that adopts TPC-DS as its basis
and expands it for offline analytics on Xeon high
performance server. The Cloud Suite (Ferdman et al.,
2012; Ghazal et al., 2013) benchmark was developed
for Scale-Out cloud workloads and mainly includes
small data sets, e.g., 4.5 GB for Naïve Bayes. Several
prior researches have characterized traditional CPU
and parallel applications such as SPEC2006, PARSEC,
and NAS on high performance server-class processors
(Prakash et al., 2008). It is also important to compare
the characteristics of big data application with these
traditional benchmark suites. We have included the
SPEC CINT2006, SPEC CFP2006 and PARSEC 2.1
benchmarks for the comparison with Big Data
Workloads. This work is different from all above
benchmarking and characterization work as it perform
a comprehensive system level (power, performance,
EDXP, DPS and DPJ) and micro architecture-
level(cache miss, TLB miss, branch misprediction)
analysis of various big data applications and big data
micro-benchmarks on two substantially different
platforms one with high performance big core and
another with low power little core to understand which
of these two architectures is the choice for efficient big
data processing. There have been also a number of
researches into application-specific (Yu et al., 2004)
and domain-specific accelerators. Using tightly
integrated FPGA (Xi Luo et al., 2013) with CPU and
GPU with CPU (Baru et al., 2013) to accelerate big data
processing have been proposed in recent work. While
deploying programmable accelerator is a new and hot
research topic, there has been little attention paid to
how CPU designs should be adapted to this change.
To the best of our knowledge, the only work on this

topic has been reported by (Arora Manish et al., 2012),
which studied the role of the CPU for a CPU+GPU
architecture. They concluded that, in a CPU+GPU
architecture, the CPU is running a code that is
significantly different from a CPU-only code. They
found that the post-GPU code has a lower ILP, higher
branch miss prediction rate, and larger number of load
and stores, and benefits less from multiple cores, as
there is less TLP after GPU offloading. In this paper,
we demonstrated as to how deploying accelerator such
as FPGA for big data affects the choice of big vs. little
core for efficient processing.

CONCLUSION

In this paper, we present a comprehensive system and
micro architecture-level analysis of big data
applications on two distinct server platforms; the
conventional approach, a high performance big Xeon
core; and the new trajectory in server design, a low
power little Atom core, which advocates the use of a
low-power core to address the power challenge. The
characterization results show significantly larger
performance drop (37%, on average) for big data
applications compared to traditional CPU applications
when running on big core server compared to little
core server. Big core-based server provides a high
performance, compared to little core, however, it is not
as power efficient. Little core-based server is more
efficient in terms of EDP for big data processing with
small data sizes. However, as the size of data increases
and with performance constraints, big core becomes
an efficient choice. The analysis of data processing
capability and efficiency of big data applications
illustrates that the choice of big core vs. little core-based
server in terms of data processing per second and data
processing per joule is closely decided by the
application type size of data, and computational and
I/O intensity of the application. In addition, we
performed the post-acceleration CPU code analysis to
find out the most efficient server architecture to process
the remaining code of big data applications. The results
show that there is a difference between the choice of
big vs. little core-based server before and after
accelerations. While most benchmarks clearly favour
little core post acceleration, several applications show
higher speed up on big core over little core post
acceleration compared to pre-acceleration. To provide
insight on whether current server design based on big
and little core architectures requires improvement in
their micro architecture parameters for efficient big data
processing, we perform a comprehensive micro
architecture characterization and compare the results
with traditional Spec, PARSEC, and scale out
applications. Our analysis indicates that the size of
data has a non-trivial impact on several micro
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architecture parameters. Moreover, results show that
while a small 4x1MB two-level data cache is sufficient
for big data applications on little core the instruction
cache hierarchy pipeline needs improvement. Also
little core needs architectural improvement in
instruction TLB miss overhead management as well
as branch predictor. Furthermore, the analysis shows
that the deep software stack of big data applications,
along with the excessive non-loop branches, affects
L1 cache hit rate and branch predictor accuracy in
both big and little cores. Moreover, big data
applications require efficient instruction pre fetchers
to predict complex patterns and sophistication branch
predictor to handle the unknown control flow.
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